Aprotic, Polar and Hydrophobic Solvent For Chemical Reactions and Extractions

MTHP

Chemical Name : 4-Methyltetrahydropyran

Synonym : 4-MeTHP

CAS No. : 4717-96-8

Kuraray

Isoprene chemicals Div.

2507-1

Chemical Reactions in MTHP

Applications of MTHP

☐ Solvent for Chemical Reactions
☐ Solvent for Extractions
☐ Solvent for Polymerizations
☐ Solvent for Coatings
kuraray

Organometallic Reactions	Reference #
Grignard	1), 4)
Lithiation of aryl bromide	6)
Anionic ortho-Fries rearrangement of carbamates with Lithium compound	6)
Alkylation of aldehyde with dialkyl zinc	6)
LAH Reduction	1)
Transition Metal Catalyzed Reactions	
Suzuki – Miyaura Coupling	7), 9)
Sonogashira-Hagiwara cross coupling	1), 7)
Palladium-Catalyzed three component coupling	8)
Nickel-Catalyzed Direct Arylation of Aliphatic Amides	2)
Platinum-Catalyzed cyclodimerization of alkynes	8)
Ruthenium-Catalyzed Hydrogenation of carbonyl compounds	5)
Olefin Metathesis	3), 7)
Substitute for halogenated solvent	
TEMPO catalyzed Oxidation	1), 4)
Dess-Martin Oxidation	1)
Swern Oxidation	1)
Epoxidation of allylic alcohol	1)
Amidation of Acid	1)
Ring-Closing-Metathesis	1)
Others	
Tin or Silicon radical-mediated addition and reduction	1)
Michael addition	1)
Wittig	1)
Dehydration condensation - Esterification and Acetalization Reduction	4)
Halogenation, Dehalogenation	
Protection & Deprotection for Peptide synthesis	10), 11)

See Slide 17 for the references

Features of MTHP & Benefits with MTHP in Chemical reactions

Features

- ✓ Aprotic & Polar
- √ Hydrophobic

- ✓ B.P. is higher than THF
- ✓ Stable against Acids etc.
- ✓ Better Reaction yield depending on reaction

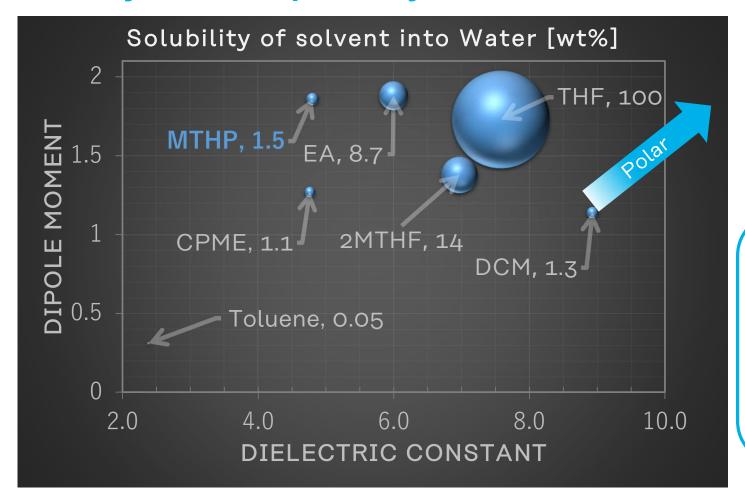
Benefits

- Good in balance of polarity/solvency and extraction yield
- Quick and clear phase separation with water
- No need to change the solvent throughout the entire process, reaction and washing/extraction
- Easy to recycle MTHP
- Less COD/BOD in wastewater
- Reduced CO₂ emission
- Higher in Reaction Rate
- Less by-products in Reaction & Quench.
 - → Higher purity of target products
- Lower Raw Material Cost

Physical Properties

Solvents are arranged in order of increase of "Solubility of solvent into water".

	B.P.	M.P.	Density	Viscosity	F.P.	Solubility of solvent into Water	Solubility of Water into Solvent	Azeotrope with Water	Log Pow
	[°C]	[°C]	[20° C]	[mPa·s]	[°C]	[wt%]	[wt%]	[°C], Water wt%	
Toluene	111	-95	0.87	0.56	4.4	0.05	0.03	85, 20	2.73
СРМЕ	106	-140	0.86	0.55	-1	1.1	0.3	83, 16	1.59
DCM	40	-97	1.32	0.44		1.3	0.2	40, 5	1.25
MTHP	105	-92	0.86	0.78	6.5	1.5	1.4	85, 19	1.90
EA	77	-84	0.90	0.43	-4	8.7	3.3	70, 8	0.73
2MTHF	80	-136	0.85	0.6	-11	14	4.4	71, 11	0.77
THF	65	-109	0.89	0.55	-15	∞	∞	64, 6	0.46
Water	100	0	1			8	∞ ∞		



DCM: Dichloromethane

2MTHF: 2-methyltetrahydrofuran

EA : Ethyl Acetate

Polarity and Compatibility with water



Despite its high polarity, MTHP also exhibits high hydrophobicity.

The unique property of MTHP are presumed to be derived from its six-membered cyclic ether structure.

Source : Shoji Kobayashi et al., Chem. Asian J. **2019**, 14, 3921 – 3937

Phase separation with water -1

<Test Method >

Added 15ml of water colored green to each test tube.

Added 15ml of each of different solvents to each test tube.

The test tubes were set to the holder, shaken together for about 20 sec. and left to stand for about 3 hours at 23° C / 73° F.

THF: No phase separation with water.

2MTHF and Ethyl Acetate:

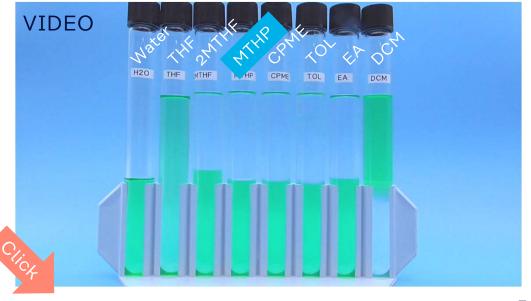
The level of water layer was elevated.

MTHP: No change in the level of water layer.

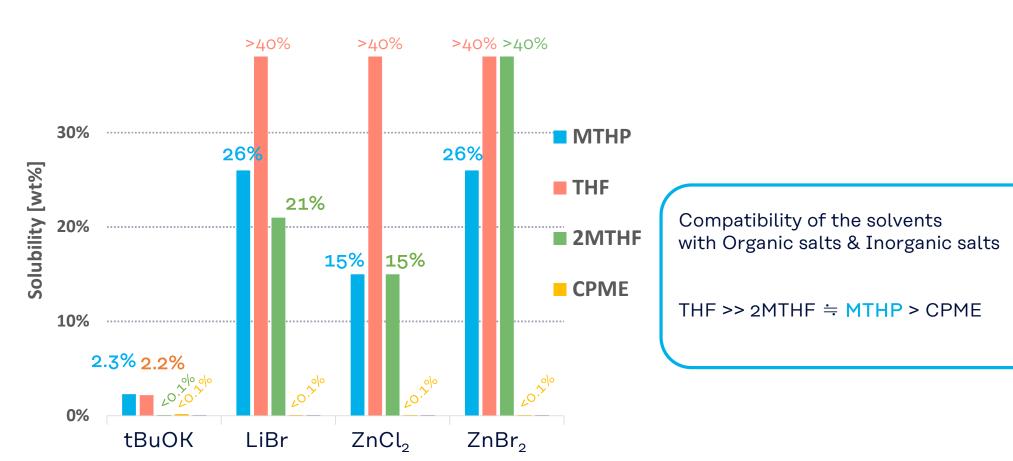
Phase separation with water -2

Length of time after the shaking for the emulsion layer to disappear

TOT THE CITIES	Time [Seconds]			
Solvent	23°C No Salt	40°C No Salt	40°C With NaCl 20wt% to Water	
THF	No Phase	Separation wit	h Water	
2MTHF	30	20	10	
MTHP	5	2	<1	
СРМЕ	2			
Toluene	8			
Ethyl Acetate	16			
DCM	>60			

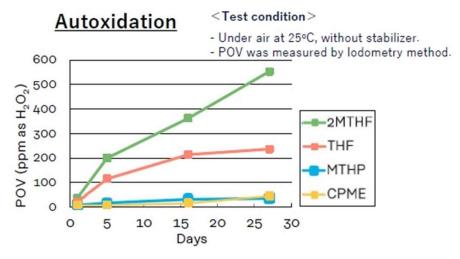

<Test Method >

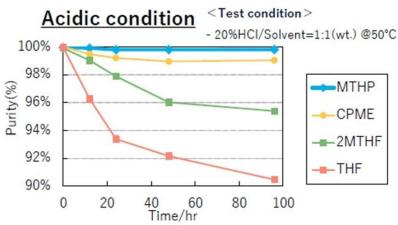
Added 15ml of water colored green to each test tube.

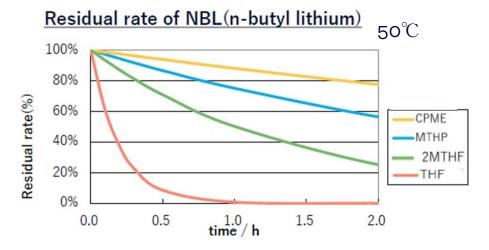

Added 15ml of each of different solvents to each test tube.

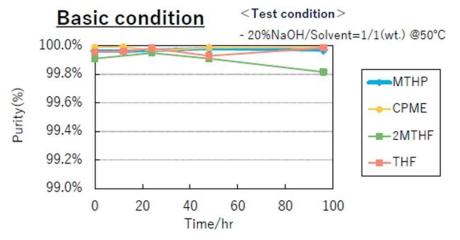
The test tubes were set to the holder, shaken together for about 20 sec. and left to stand at 23° C / 73° F.

The time was measured for the emulsion layer to disappear and For the interface level stabilize.

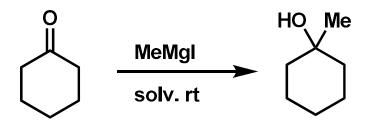

Solubility of Organic & Inorganic salts into each solvent at 22°C




kura*ray*


8

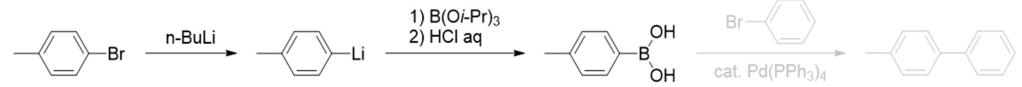
Stability of solvents

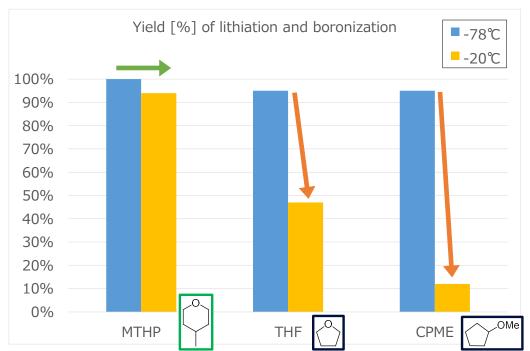


Chemical Reaction : Grignard

		Yield [%]	
Solvent	In Org. layer	In Aqua. Layer	Total
THF	0.0	0.0	0.0
2MTHF	70.5	2,5	73.0
MTHP	83.9	0.9	84.9

MeCl(b.p.=24°C), MeBr(b.p.4°C) are not easy to handle because of their low b.p. though MeI(b.p.42°C) is high enough in b.p. to handle.


However, in the reaction of methyl iodide and magnesium in THF, the methyl Grignard reagent cannot be prepared in a high yield due to side reactions.


$$2RX \xrightarrow{2Mg} \begin{bmatrix} 2RMgX & \longrightarrow & R_2Mg \\ MgX_2 \end{bmatrix} \xrightarrow{R-R} \xrightarrow{Homo coupling}$$

The side reaction was inhibited, and target compound was produced in good yield with MTHP.

Chemical Reaction: Lithiation and Boronization

- Preparation of Raw material for Suzuki-Miyaura coupling -

Yield of boron compound were good no matter which solvent is used when the reaction was conducted at -78°C, Which is too low to conduct on a commercial scale.

Only MTHP system had good yield of boronic acid

When the reaction was conducted at – 20°C, Which is feasible temperature on a commercial scale.

Chemical Reaction: Suzuki – Miyaura Coupling

Reaction Temp. * [℃]	Reaction time [hrs]	Yield Of coupling compounds
62	8	70
70	4	82
82	2	93
82	2	89
84	2	88
	Temp. * [℃] 62 70 82 82	Temp. * time [°C] [hrs] 62 8 70 4 82 2 82 2

MTHP system was good in both reaction rate and Yield as Toluene system was, which is a popular solvent for this reaction.

^{*} Azeotropic reflux with Water, a co-solvent

Chemical Reaction: TEMPO catalyzed Oxidation

TEMPO(0.1mol%)

- Substitute for DCM -

		Yield [%]		
Solvent	Carboxylic Acid	Aldehyde	Alcohol Raw Material	Notes
DCM	75	0.9	0.6	Low in Selectivity
СРМЕ	64	15	13	Low in conversion
MTHP	89	8.5	0.9	

MTHP can be a substitute for DCM, Dichloromethane, which is a hazardous solvent.

General Information

Product Name : MTHP

• CAS No. : 4717-96-8

Package : Drum (Net 170kg)

Specifications

• Appearance :Colorless transparent

• Purity (%GC) : ≥ 99.0

• Water (ppm) :≤200

Regulatory status

Government Inventory list	Status	Remarks
ENCS (Japan)	Present	
EU-REACH (Europe)	Registered	Registrant : Kuraray Europe GmbH (Importer) Tonnage Band 10-100 MT
TSCA (USA)	Registered	SNUR
IECSC (China)	Provisionally Registered	Tonnage Band : 1-10 MT
K-REACH (Korea)		OR registration Tonnage Band : 10-100 MT

^{*} Contains Stabilizer : BHT 20ppm

Hazardous Information

	MTHP	THF	2MTHF
Pictogram			
Flammable liquids	Category 2	Category 2	Category 2
Skin corrosion/irritation	Category 1		Category 2
Serious eye damage/eye irritation	Category 1	Category 2	Category 1
Skin sensitization	Category 1		
Acute toxicity (oral)		Category 4	Category 4
Carcinogenicity		Category 2	
Specific target organ toxicity		Category 3	
Reference	SDS, Kuraray Dec 13, 2023	SDS, Thermo Fisher Scientific Dec 6, 2024	SDS, Thermo Fisher Scientific Sep 22, 2023

Dissolution of Resins in the different solvents

RESIN	MTHP	THF	2MTHF	СРМЕ
ABS	D	D	D	D
Acrylic resin	D	D	D	D
Polystyrene	D	D	D	D
PVC	D	D	D	Р
Polycarbonate	Р	D	D	Р
Fluoro rubber	Р	Р	D	Р
SBR	Р	Р	D	Р
Polyurethane	Р	Р	D	Р
Butyl rubber	Р	ND	Р	ND
Nylon-6	ND	ND	ND	ND
Phenol resin	ND	ND	ND	ND
PP	ND	ND	ND	ND
HDPE	ND	ND	ND	ND
LDPE	ND	ND	ND	ND
Teflon	ND	ND	ND	ND

< Test Method >

Test panels of the resin were dipped into each solvent at 50°C for 7days.

After the dipping, weight of the test panels were measured and compared with original one.

D : Dissolved completely

P: Dissolved 30% to less than 100%

ND: Dissolved 0% - 30%

Note: The results may vary depending on the manufacturer and grade of the resin.

Reference

- 1) Shoji Kobayashi, Araki Masuyama et al., Chemistry An Asian Journal, 2019, Volume 14, Issue 21, 3921-3937
- 2) Miki Iyanaga, Yoshinori Aihara, and Naoto Chatani, *The Journal of Organic Chemistry*, **2014**, 79, 11933-11939
- 3) Anna Kajetanowicz, Karol Grela et al., ACS Sustainable Chem. Eng., 2020, 8, 49, 18215-18223
- 4) Yuusuke Saitou, Speciality Chemicals Magazine, 2023, May/June, 30-32
- 5) Yoichi Hoshimoto et al., Tetrahedron Chem, 2024, 9, 100059
- 6) Marco Blangetti et al., Eur. J. Org. Chem. 2024, 27, e202400313
- 7) Bhaskar N. Thorat et al., Organic Process Research & Development, 2022, 26, 3, 480-492
- 8) Mamoru Tobisu et al., *Organometallics*, **2020**, 39, 1678-1682
- 9) Haruki Mizoguchi, Akira Sakakura et al., Chem. Sci., 2022, 13, 9580-9585
- 10) Daniel Sejer Pedersen et al., RSC Adv., 2020, 10, 42457-42492
- 11) Hisata, Y., Washio, T., Takizawa, S. et al., Nat Commun., 2024, 15, 3708

Contact Information

Kuraray America, Inc.

Advances Chemicals 3700 Bay Area Blvd. Suite #680, Houston, TX 77058 U.S.A.

P +1 281 283 1790 chemical.sales@kuraray.com Kuraray Co., Ltd.

Isoprene Chemicals division Tokiwabashi Tower 2-6-4, Otemachi, Chiyoda-ku Tokyo 100-0004

Japan

https://www.isoprene-chemicals.com/index.html

Kuraray Trading (Shanghai) Co., Ltd. Unit 2106, 2 Grand Gateway, 3 Hongqiao Road, Xuhui District, Shanghai 200030, China

P +86 21 6407 9182 https://www.kuraray-trading.co.jp/eng/

Kuraray Europe GmbH

BU Chemicals Philipp-Reis-Straße 4 65795 Hattersheim am Main Germany

P +49 69 305 35844 chemicals@kuraray.com

Kuraray India Private Ltd.

Prius Platinum 2nd Floor B Wing, D₃ District Center Saket New Delhi 110017, Taipei City 104 India

P +91 11 4090 4400 https://kurarayindia.co.in/ Kuraray Trading (Taipei) Co., Ltd.

4 F., No. 372, Linsen N. Rd., Zhongshan Dist., Taiwan (R.O.C.)

P +886 2-2521-8831

https://www.kuraray-trading.co.jp/eng/

18

© Kuraray Co., Ltd. 2023

Brand/Product name, Brand/Product name and Brand/Product name is a/are trademark(s) or registered trademark(s) of Kuraray Co., Ltd. or its affiliates. Trademarks may not be applied for or registered in all countries. The information, recommendations and details given in this document have been compiled with care and to our best knowledge and belief. They do not entail an assurance of properties above and beyond the product specification. The user of our products is responsible for ensuring that the product is suitable for the intended use and conforms to all relevant regulations. Kuraray Co., Ltd. and its affiliates do not accept any guarantee or liability for any errors, inaccuracies or omissions in this document.

